
Binary Arithmetic for DNA
Computers

Rana Barua1

Division of Theoretical Statistics and Mathematics,
Indian Statistical Institute,

203 B.T. Road, Calcutta 700 035, India.
e-mail: rana@isical.ac.in

and
Janardan Misra2

Texas Instruments India Ltd.
Wind Tunnel Road

Bangalore 560017, India

Abstract

We propose a (recursive) DNA algorithm for adding two binary numbers
which require O(log n) bio-steps using only O(n) different type of DNA
strands, where n is the size of the binary string representing the larger
of the two numbers. The salient feature of our technique is that the input
strands and the output strands have exactly the same structure which makes
it fully procedural unlike most methods proposed so far. Logical operations
of binary numbers can easily be performed by our methods.

I.S.I. Tech Report No. 13/2001
December 12, 2001

1corresponding author
2work done at ISI

Binary Arithmetic for DNA Computers

Rana Barua‡ Janardan Misra§

December 13, 2001

1 Introduction

One of the earliest attempts to perform arithmetic operations (addition of
two positive binary numbers) using DNA is by Guarneiri et al [11], utiliz-
ing the idea of encoding differently bit values 0 and 1 as single-stranded
DNAs, based upon their positions and the operand in which they appear.
This enabled them to propagate carry successfully as horizontal chain reac-
tion using intermediate place holders because of the presence of appropriate
complementary substrands, which annealed together. PCR then allowed one
to insert correct value of carry and to further propagate it. Though their
technique yields the correct result of addition of two given binary numbers,
it is highly non-procedural in nature since the output strands are vastly
different in structure from the input strands (which themselves are coded
differently).

The later attempts were by Vineet Gupta at al[13]. They performed
logic and arithmetic operations using the fixed bit encoding of the full cor-
responding truth tables. They construct the strands for bits in first operand
(level one) and corresponding to each bit value (0 or 1), all possible bit values
(00, 01, 10, 11)1 in second operand(level two) such that in the next phase
when first operand - strands are pored into the pot containing all possible
second operand - strands (including the correct one) annealing results in a
structure which can be interpreted according to the type of the operation.
In case of arithmetic operation, in later stages of computation, they add
all possible intermediate results and successively propagate carry from the
lowest weighted bit to the highest weighted bit.

Though the encoding works well with logic operations, the arithmetic
operation does not seem to be so easy as the technique requires that all

‡Indian Statistical Institute, Calcutta, India; e-mail:rana@isical.ac.in
§Texas Instruments, Bangalore, India; e-mail:janmisra@india.ti.com
1In fact they use along with usual dnts other nucleotides like Uracil(U), 2,6-

diaminopurine(P) to achieve some additional complementary structures

1

the possible intermediate results be coded and added manually one by one
during processing. This is a labor intensive and time consuming job.

Other later attempts are due to Z. Frank Qiu and Mi Lu [15], which
use substitution operation to insert results (by encoding all possible outputs
of bit by bit operation along with second operand) in the operand strands.
Though they propose to extend their method to higher radix like octal,
decimal etc; the possible number of encoding of different intermediate results
seems to be exponential. Moreover, the cleansing operation which makes the
output similar to first input, for reuse in further operations, is not an error
resistant operation.

Ogihara, Ray and Amos, Dunne [14, 1] present methods to realize any
Boolean circuit (with bounded fan in) using DNA strands in a constructive
fashion. Here the problem is that of constructing large Boolean circuits for
arithmetic operations, (manually or automating the process) rendering the
technique of theoretical importance only.

Other new suggestions to perform all basic arithmetic operations are
by Atanasiu [4] using P systems, and by Frisco [9] using splicing operation
under general H systems, and by Hubert and Schuler [12]

In this article, we describe a simple, new and efficient recursive DNA
computing technique for basic arithmetic operations like addition, multipli-
cation and subtraction of binary numbers, based upon their set representa-
tions. The salient features of our technique are the following.

1. Unlike most other method available so far, our method is fully proce-
dural i.e., the structure of the output strands is exactly similar to that
of the input strands. Thus the result can be further reused without
any changes, making iterative as well as parallel operations feasible.

2. The number of different DNA strands required is at most of the order
of size of the binary number. That means it avoids the problem of
increasing volume.

3. The number of bio-steps required by the technique for addition is, on
the average, O(log n) and for multiplication it is O((log2 n)2), where
n is the size of the binary numbers.

4. All logical operations on binary numbers can be performed very easily
using our method.

2

2 Recursive DNA Arithmetic

2.1 Underlying Mathematical Model

Let α = αn . . . α1 and β = bn . . . β1 be two n -bit binary numbers, where αi,
βi ∈ {0, 1} for all 1 ≤ i ≤ n and α1, β1 denote the least significant bits. Let

X[α] = {i:αi = 1} and X[β] = {j:βj = 1};

i.e. they are the sets containing the positions where binary representation
these numbers sets bits to 1. For any set Z of integers and any integer i, we
define

Z + i = {z + i: z ∈ Z} and let Z+ = Z + 1.

For any two sets of integers X1, X2 we define

X1 ⊕X2 = {x:x ∈ X1 ∪X2 but x /∈ X1 ∩X2} (symmetric difference).

We denote by V al(X) the binary number represented by set X (of positive
integers); e.g. V al(X[α]) = α and V al(X[β]) = β and V al(φ) = 0.
In terms of this symbolism we can state the abstract recursive procedures
for addition and multiplication of the two given positive binary numbers as
follows.

Addition.
Add(α, β) = V al(RecursiveAdd(X[α], X[β])); where

RecursiveAdd(Y, Z) = Y if Z = φ
= Z if Y = φ
= RecursiveAdd((Y ⊕ Z), (Y ∩ Z)+); other-

wise.

It is easy to see that this procedure terminates and that for two binary
numbers α, β, Add(α, β) represents α + β. This follows from the fact that

α + β = α⊕ β + 10× (α ∧ β),

where ⊕ denotes bitwise addition modulo 2 and ∧ denotes bitwise multipli-
cation.(Note that 10 above is the binary representation of 2.)

Multiplication. The multiplication procedure can be realized, using
successive additions of left shifted α’s, according to the following formula.

α× β =
∑

1≤j≤n,bj=1

α× 2j−1,

3

where we also use α etc. to denote the integer whose binary representation
is α. Since multiplication of a binary number with power of 2, say 2j , is
obtained by a left shift of the number by j, we have

X[2j × α] = (X[α]) + j.

Hence, we have

Mul(α, β) = Add({V al(X[α] + (j − 1))}βj=1),

where Add(α, β, γ) = Add(Add(α, β), γ) etc.
Subtraction operation for integer arguments can be performed as 2’s

complement addition ([10] p 23).
Division. Once we can perform addition and subtraction operation then

mapping of division operation in terms of these can be done using any of
the standard digital arithmetic techniques ([10] p 250). For instance we may
consider nonrestoring division ([10] p 253) which requires an average of n
additions or substractions.

2.2 DNA Algorithm

Since the procedure described above is recursive in nature and as can be
seen easily in context of currently available DNA tool - kit operations and
other high level operations as suggested in [6], the most important operation
to be realized is incrementing all the integers in the sets like X[α] by one.
Actually the coding of numbers and various other steps basically rest upon
the ease with which this step can be realized. Keeping this point in mind
we propose the following DNA algorithm:

DNA Encoding of Binary Numbers
Note that each binary number is represented by a set of integers which

are positions where bits are set to 1. Thus each binary number is represented
as a test tube (a multi set of strings over Γ = {A,C, G, T}) of DNA double
strands encoding the integers (positions where bit is set to 1) from 1 to n,
such that the DNA strand for integer i is (cf. [5] for notation)

dsi =l S0(GAATTGC5)iGAATTC.

(Note that l GAATTC is the restriction site for EcoRI.) Here S0 may
be any suitable 20 to 30 base-pair long DNA double strand not containing
l GAATTC as a substrand. Thus the test tube T [α] representing binary
number α is

T [α] = {dsi: i ∈ X[α]}.

We first present the DNA-based implementation for addition.

4

1. Addition

Step0. Check whether any of T [α] or T [β] is empty. If yes, then the
other tube contains the final result (which can be obtained by detect-
ing the presence of all different strands using gel electrophoresis or
extraction technique).
Else go to step 1.
Initially T [α] and T [β] represent the test tubes encoding α and β re-
spectively.

Step1. Melt the double strands in T [α] and T [β] to extract up-strands
(using ↓ S0) from T [α] and down-strands (using ↑ S0) from T [β]. Now
mix these two extracts so that complementary strands can get annealed
to form stable double strands. As can be seen, the resulting double
strands in the tube are exactly those coming from T [α]

⋂
T [β] and

single strands are those coming from T [α]−T [β] (up-strands containg
↑ S0) and from T [β]− T [α] (down-strands with ↓ S0). Using standard
DNA toolkit operations, single strands can be separated from double
strands and then, using PCR, the single strands can be complemented
using S0 as a primer. Denote by T [α] the tube containing these double
strands obtained after PCR (i.e. T [α]⊕T [β]) and by T [β] the annealed
double strands (i.e. T [α]

⋂
T [β]).

Step2.(Increment by One). Add restriction enzyme EcoRI to T [β]
to cut all the double strands at their 3′ end. This restriction enzyme
activity leaves double strands with 5′ hanging ends, of the form

l S0(GAATTGC5)iG ↓ AATT.

Now up-strands
↑ AATTGC5GAATTC

and ligation enzyme are added to the test tube which results in the
strands of the form l S0(GAATTGC5)iGAATT ↑ GC5GAATTC.
These strands can now be polymerized to form

l S0(GAATTGC5)i+1GAATTC.

Thus T [β] contains strands representing (X[α]
⋂

X[β])+ .

Step3. Go back to step0.

Remark: Logical operations on binary strings can easily be per-
formed by our method. For instance, to obtain the NAND of two n-
bit strings α and β, simply construct the test tubes T [α], T [β] and the

5

tube T ′ consisting of strands encoding all the integers from 1, . . . , n.
Then obtain the tube T ′′ representing T [α]

⋂
T [β] as in Step1 above.

Now obtain T = T ′ − T ′′ by set extraction as in [6]. T represents the
desired result.

2. Multiplication

Step1. For each j ∈ X[β], j ≥ 2, construct test - tubes Tj [α] sim-
ilar to Step 2 above with the difference that for annealing we add
↑ AATTGC5(GAATTGC5)j−2GAATTC instead of adding
↑ AATTGC5GAATTC (add it when j = 2).
For j = 1, take T1[α] = T [α].

Step2. If the test tubes obtained in step1 are Tj1 [α], Tj2 [α], Tj3 [α] · · ·,
do the following:
Step2.1 Perform Addition operation (described above) concurrently
with successive pairs of tubes (Tj1 [α], Tj2 [α]), (Tj3 [α], Tj4 [α]) · · · Let the
result be kept in T 1

j1
[α], T 1

j2
[α],

Step2.2 Repeat Step2.1 until a single tube T is obtained.

3. Subtraction

The subtraction operation can be done utilizing ideas from the conven-
tional digital arithmetic, that is to say as per 2’s complement method.
To perform α− β we do the following:
Step0,, By gel electrophoresis, determine whether α ≥ β or β ≥ α.
Assume α ≥ β.

Step1. Construct T [α], T [β] and T that consists of dsi for all i ∈
{1, . . . , n}.

Step2. Obtain T1 = T−T [β] as described above in Addition operation
or as a set extract operation described in [6].

Step3. Perform addition operation with T [α] and T1 and keep the
result in T1.

Step4. Perform addition operation with T1 and T [1] (the latter con-
sisting of only one type of DNA strands viz. l S0GAATTGC5GAATTC
encoding position 1).

Step5. Extract the DNA strands encoding n + 1. The residual test
tube gives the desired result.

6

2.3 Complexity Analysis

Time Complexity
Addition. As each level of recursion in addition operation involves a

fixed number of bio steps, therefore the total number of steps depends on
the number of recursion levels in the abstract model. We shall compute the
expected number of bio-steps for two random n-bit numbers α, β. Since the
probability that at each position bit will be set to 1 (or 0) is 1/2, expected
number of 1s’ in any randomly chosen binary number of length n are n/2.
Similarly probability that at any position both the numbers set the bit to 1 is
(1/2)× (1/2) = (1/4). Therefore, expected number of positions where both
the numbers set bits to 1 is n/4, which is the expected size of X[α]

⋂
X[β]

and consequently of (X[α]
⋂

X[β])+. Similarly, the probability that at any
position both the numbers set bits differently is (1/2).(1/2) + (1/2).(1/2) =
(1/2) so that the expected number of 1’s in α⊕β as n/2. This is same as the
expected number of integers in X[α]⊕X[β]. Now for 2nd level of recursion,
the probability that position number i is present in both the sets from the
1st step is (1/2) × (1/4) = (1/8). Hence, expected number of integers
after set intersection and shifting by one is n/8; while expected number of
integers in symmetric difference of the sets is n/2 since, probability that an
integer is present in only one of the two sets is (1/2).(1/4) + (1/2).(3/4) =
(1/2). Following the same argument, it can be seen that after ith level of
recursion, the expected size of set resulting after set intersection and shifting
will be n/2i+1. Therefore, the expected number of recursion levels will be
[log2 n]− 1. Thus the expected number of bio-steps needed in the addition
operation is O(log2 n).

Multiplication. In case of multiplication, the expected number of addi-
tion that has to be performed is (log n− 2). Hence the expected number of
bio-steps will be O((log n)2).

Subtraction. Since subtraction involves only two additions and a constant
number of bio-steps, the expected number of bio-steps in this case is also
O(log n).
Volume Complexity

Since at any step of the above procedure we need only test tubes con-
taining DNA strands representing integers from 1 to n, the space complexity
(volume) is linear in the size of binary numbers i.e. it is O(n).

2.4 Error Analysis

Errors in DNA computing experiments are of primary concern and the issue
has been looked into by many researchers [7, 2, 3, 8]. One potential source
of error in the above suggested algorithms seems to be partial annealing
[16]. It is doubtful whether partial annealing can be avoided. Our choice
of C5 is to make results of partial annealing less stable compared to correct

7

matches. Other types of errors (like as loss of strands during separation
of single strands and double strands from the tube) can be substantially
minimized as in [7].

References

[1] M.Amos and P.E.Dunne, DNA Simulation of Boolean Circuits,
Tech Report CTAG-97009, Dept of Computer Science, Univer-
sity of Liverpool, Dec 1997.

[2] M.Amos, S.Wilson, D.A.Hodgson, G.Owenson and A.Gibbons,
Practical Implementation of DNA Computation. In: Proc 1st In-
ternational Conference of Unconventional Models of Computation,
Aukland, N.Z., Jan 1998, pp 1-18.

[3] Y.Aoi, T.Yoshinobu, K.Tanizawa, K.Kinoshita and H.Iwasaki, Lig-
ation Errors in DNA Computing. In: Proc 4th DIMACS Workshop
on DNA Based Computers, U Penn, 1998, pp 181-187.

[4] A.Atanasiu, Arithmetic with Membrames. In: Proc of the Workshop
on Mutiset Processing, Curtea de Arges, Romania, Aug 2000, pp 1-
17.

[5] S.Biswas, A Note on DNA Representation of Binary Strings.
In: Computing with Bio-Molecules. Theory and Experiments, Ed
G.Paun, 1998, pp 153-157.

[6] D.Boneh, C.Dunworth, R.Lipton and J.Sgall, On Computational
Power of DNA, Princeton CS Tech Report No. CSTR49995,
1995.

[7] D.Boneh, C.Dunworth, J.Sgall and R.Lipton, Making DNA Com-
puters Error Resistant. In: Proc 2nd DIMACS Workshop on DNA
Based Computers, Princeton, 1996, pp 102-110.

[8] K.Chen and E.Winfree, Error Correction in DNA Computing: Mis-
classification and Strand Loss. Proc of the 5th DIMACS Workshop
on DNA Based Computers, MIT, Cambridge, 1999, pp 49-63.

[9] P.Frisco, Parallel Arithmetic with Splicing. Romanian Journal of
Information Science and Technology, 3, 2000, pp 113-128.

[10] J.P.Hayes, Computer Architecture and Organization. McGraw-Hill
International, Singapore, 2nd ed. 1988.

[11] F.Guarneiri, M.Fliss and C.Bancroft, Making DNA Add. Science
273, 1996, pp 220-223.

8

[12] H.Hug and R.Schuler, DNA Based Parallel Computation of Simple
Arithmetic. In: Proc of 7th DIMACS Workshop on DNA Based
Computers, Tampa, 2001, pp 159-166.

[13] V.Gupta, S.Parthasarathy and M.J.Zaki, Arithmetic and Logic Op-
erations with DNA. In:Proc of 3rd DIMACS Workshop on DNA
Based Computers, U Penn 1997, pp 212-220.

[14] M.Ogihara and A.Ray, Simulating Boolean Circuits on a DNA Com-
puter. Tech Report TR631, Department of C.Sc., University of
Rochester, Aug 1996.

[15] Z.F.Qiu and M.Lu, Arithmetic and Logic Operations with DNA
Computers, Proc of 2nd IASTED International Conference on Par-
allel and Distributed Computing and Networks, Brisbane, 1998, pp
481-486.

[16] M.Yamamoto, J.Yamashita, T.Shiba, T.Hirayama, S.Takiya,
K.Suzuki, M.Munekata and A.Ohuchi, A Study on the Hybridiza-
tion Process in DNA Computing, In: Proc of the 5th DIMACS
Workshop on DNA Based Computers, MIT, Cambridge, 1999,
pp101-110.

9

